Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(32): 21479-21491, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539659

RESUMO

In recent times, ultra-thin films of hafnium oxide (HfO2) have shown ferroelectricity (FE) attributed to the orthorhombic (o) phase of HfO2 with space group Pca21. This polar o-phase could be stabilized in the doped thin film of the oxide. In the present work, both polar and non-polar o-phases of HfO2 could be stabilized in Gd-doped bulk polycrystalline HfO2. Rietveld analysis of XRD data shows that the relative population of o-phases in the presence of the monoclinic (m) phase of HfO2 increases with increasing Gd-content. The local environment around the host atom has been investigated by time differential perturbed angular correlation (TDPAC) spectroscopy, synchrotron based X-ray near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) measurements showed a reduction in grain size with increasing Gd-dopant indicating a solute drag effect. It could be established that the segregation of the Gd-dopant in the grain boundary is a thermodynamically favorable process and the solute drag effect plays an important role in nucleation of the o-phase in bulk HfO2. Stabilization of Gd in both Pbca and Pca21 phases of HfO2 was supported by defect formation energy calculations using density functional theory (DFT). The present study has important implications in future applications of HfO2 in ferroelectric devices and in understanding the role of dopants in stabilizing the o-phase of HfO2 in the bulk.

2.
Appl Radiat Isot ; 154: 108885, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31536908

RESUMO

Routine availability of high specific activity 186Re would provide a significant boost to the development of potent theranostic radiopharmaceuticals. In the present study, 181-186Re was produced by proton bombardment (12 MeV, average beam intensity 180 nΑ) for 60 h on natural tungsten oxide target. A facile electrochemical method has been developed for radiochemical separation of Re radioisotopes from irradiated target material. The overall yield of the process was >80% and Re radioisotopes could be separated in a form suitable for preparation of radiopharmaceuticals.

3.
Phys Chem Chem Phys ; 20(45): 28699-28711, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30411106

RESUMO

The present work reports the microscopic details of anatase (A) to rutile (R) phase transformation in a Mn-doped TiO2 system. Titanium dioxide (TiO2) powder was synthesized at three different dopant percentages, namely 1, 5, and 10 atom% of Mn, by a coprecipitation technique. Time differential perturbed angular correlation (TDPAC) spectroscopy was used to identify the formation of the rutile-like phase (R*) during the phase-transition process and revealed interface nucleation to be promoted by the Mn dopant. Electron paramagnetic resonance (EPR) spectroscopy, synchrotron-based X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) studies showed that Mn exhibited a mixed valence states of 2+ and 4+ at different stages of the annealing process. The rutile onset temperature gradually decreased with the increase in the Mn content. The present report proposes the mechanism for the phase transformation and details the effect of Mn on the A to R phase-transformation process. This can assist in gaining a fundamental understanding of the A to R phase-transformation process and the role of the dopant in stabilizing one phase over the other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...